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COMBINATORIAL RANK OF QUANTUM GROUPS

OF INFINITE SERIES

V.K. KHARCHENKO, M. L. DÍAZ SOSA

Abstract. We demonstrate that the combinatorial rank of the mul-
tiparameter version of the Lusztig “small” quantum group uq(sp2n),
or, equivalently, of the Frobenius-Lusztig kernel of type Cn, equals
blog2(n− 1)c+ 2 provided that q has a finite multiplicative order t > 3.
It is known that the combinatorial rank of the multiparameter ver-
sion of the Frobenius-Lusztig kernel of type An equals blog2 nc + 1,
whereas in case Bn it is equal to blog2(n− 1)c+ 2, and in case Dn it is
blog2(n− 2)c+ 2.

1. Introduction

In this article, we continue investigation of the combinatorial rank of Lusztig
“small” quantum groups uq(g) started in [4, 5, 6]. The combinatorial rank of a
character Hopf algebra H generated by skew primitive elements a1, a2 . . . , an is the
length of the sequence of bi-ideals

0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Ji ⊂ . . . ⊂ Jκ = kerϕ,

where ϕ is the natural epimorphism G〈X〉 → H, xi → ai of the free character
Hopf algebra, and Ji+1/Ji is an ideal generated by all skew primitive elements of
kerϕ/Ji.

We show that the combinatorial rank of the multiparameter version of the Lusztig
“small” quantum group uq(sp2n), equals blog2(n − 1)c + 2 provided that q has a
finite multiplicative order t > 3. It is known from [5] that the combinatorial rank
of uq(sln+1) equals blog2 nc + 1, whereas in case g = so2n+1 it has the same value
blog2(n − 1)c + 2 (see [6]), and in case g = so2n it equals blog2(2n − 3)c + 1 =
blog2(n− 2)c+ 2 (see [4]).

The method of calculation is based on the recently descovered explicit coproduct
formula (see [7]), and it is very similar to that of previous papers [4, 5, 6]. An
important difference is that in case Cn, the PBW generators v[k, φ(k)] of the explicit
coproduct formula are not defined by Lyndon–Shirshov words. At the same time,
the subalgebra of constants, which is very important for calculations, is generated by
powers of bracketed Lyndon–Shirshov words. In fact, when t is even, the elements
v[k, φ(k)]t/2 not always are constants. By this reason, in Section 5, we have to
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develop specific calculations for bracketed Lyndon-Shirshov words [vk] that do not
appear in the coproduct formula.

In the second, third and fourth sections, we briefly recall the main concepts
and basic statements which are of use later. In the fifth section we make specific
calculations and demonstrate that U+

q (sp2n) and u+
q (sp2n) have the same bracketed

Lyndon-Shirshov words that define the PBW bases. Then, in sixth section, we prove
that every intermediate biideal is generated by powers of that bracketed words.

In the seventh section, in perfect analogy with [4, Section 8], we demonstrate that
U+
q (so2n) is a finite extension of a skew central Hopf subalgebra GC of quantum

polynomials in fixed powers of the PBW generators yi = [w]tw . The elements yi are
precisely the generators of the subalgebra C of constants with respect to the non-
commutative differential calculus that naturally arise on the subalgebra generated
by xi, 1 ≤ i ≤ n. In the one parameter case considered by C. De Concini, V.G.
Kac, and C. Procesi in [2, 3], the subalgebra C is central, and GC = GZ0, where
Z0 is the smallest subalgebra invariant with respect to Lusztig braid group action
containing all xti, g

t
i , 1 ≤ i < n, xt

′

n , g
t′

n . Here t′ = t if the parameter q has odd
multiplicative order, and t′ = t/2 otherwise. We show that each Hopf ideal Jj , j > 1
is generated by some of the elements yi. This allows us to find the combinatorial
rank in Sections 8 using the explicit coproduct formula.

2. Preliminaries

In this section, we collect some known results on the structure of an arbitrary
character Hopf algebra. Recall that a Hopf algebra H is referred to as a character
Hopf algebra if the group G of all grouplike elements is commutative and H is
generated over k[G] by skew primitive semi-invariants ai, i ∈ I:

(2.1) ∆(ai) = ai ⊗ 1 + gi ⊗ ai, g−1aig = χi(g)ai, g, gi ∈ G,
where χi, i ∈ I are characters of the group G.

2.1. Skew brackets. Let us associate a “quantum” variable xi to ai. For each
word u in X = {xi | i ∈ I}, let gu or gr(u) denote an element of G that appears
from u by replacing each xi with gi. In the same way, χu denotes a character that
appears from u by replacing each xi with χi. We define a bilinear skew commutator
on homogeneous linear combinations of words in ai or in xi, i ∈ I by the formula

(2.2) [u, v] = uv − χu(gv)vu,

where we sometimes use the notation χu(gv) = puv = p(u, v). Of course, p(u, v) is
a bimultiplicative map:

(2.3) p(u, vt) = p(u, v)p(u, t), p(ut, v) = p(u, v)p(t, v).

The brackets satisfy the following Jacobi identity:

(2.4) [[u, v], w] = [u, [v, w]] + p−1
wv[[u,w], v] + (pvw − p−1

wv)[u,w] · v.
The Jacobi identity (2.4) implies the following conditional identity

(2.5) [[u, v], w] = [u, [v, w]], provided that [u,w] = 0.

The brackets are related with the product by the following ad-identities

(2.6) [u · v, w] = pvw[u,w] · v + u · [v, w],

(2.7) [u, v · w] = [u, v] · w + puvv · [u,w].
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2.2. Radford biproduct and the ideal Λ. The group G acts on the free algebra
k〈X〉 by g−1ug = χu(g)u, where u is an arbitrary monomial in X. The skew group
algebra G〈X〉 has the natural Hopf algebra structure

∆(xi) = xi ⊗ 1 + gi ⊗ xi, i ∈ I, ∆(g) = g ⊗ g, g ∈ G.
We fix a Hopf algebra homomorphism

(2.8) ξ : G〈X〉 → H, ξ(xi) = ai, ξ(g) = g, i ∈ I, g ∈ G.
If the kernel of ξ is contained in the ideal G〈X〉(2) generated by xixj , i, j ∈ I,

then there exists a Hopf algebra projection π : H → k[G], ai → 0, gi → gi. Hence,
by the Radford theorem [14], we have a decomposition in a biproduct, H = A?k[G],
where A is a subalgebra generated by ai, i ∈ I (see [1, §1.5, §1.7]).

Definition 2.1. In what follows, Λ denotes the biggest Hopf ideal in G〈X〉(2),
where, as above, G〈X〉(2) is the ideal of G〈X〉 generated by xixj , i, j ∈ I. The ideal
Λ is homogeneous in each xi ∈ X (see [5, Lemma 2.2]).

The algebra A has the structure of a braided Hopf algebra, [17], with a braiding
τ(u⊗ v) = p(v, u)−1v⊗u. If Ker ξ = Λ than A is a Nichols algebra [1, §1.3, Section
2] or, equivalently, a quantum symmetric algebra.

2.3. Differential calculi. The free algebra k〈X〉 has two closely related differen-
tial calculi defined by the following Leibniz rules:

(2.9) ∂j(xi) = δji , ∂i(uv) = ∂i(u) · v + χu(gi)u · ∂i(v).

(2.10) ∂∗j (xi) = δji , ∂∗i (uv) = p(xi, v)∂∗i (u) · v + u · ∂∗i (v).

Lemma 2.2. ([12, Lemma 2.10]). Let u ∈ k〈X〉 be an element homogeneous in
each xi, 1 ≤ i ≤ n. If puu is a tth primitive root of 1, then

(2.11) ∂i(u
t) = p(u, xi)

t−1 [u, [u, . . . [u︸ ︷︷ ︸
t−1

, ∂i(u)] . . .]].

The partial derivatives and coproduct are related by

(2.12) ∆(∂i(u)) =
∑
(u)

g−1
i u(1) ⊗ ∂i(u(2)),

where we use the Sweedler notations ∆(u) =
∑

(u) u
(1)⊗u(2). Recall that the braided

antipode σb : k〈X〉 → k〈X〉 acts on a word u as follows

σb(u) = gr(u)σ(u),

where σ is the antipode of G〈X〉. The braided antipode satisfies

(2.13) σb([u, v]) ∼ [σb(v), σb(u)]

and

(2.14) σb(∂∗i (u)) ∼ ∂i(σb(u)),

where ∼ is the projective equality: a ∼ b ⇐⇒ a = αb, 0 6= α ∈ k.

Lemma 2.3. (Milinski—Schneider criterion). Suppose that Ker ξ = Λ. If a poly-
nomial f ∈ k〈X〉 is a constant in A (that is, ∂i(f) ∈ Λ, i ∈ I), then there exists
α ∈k such that f − α = 0 in A.

See details in [4, Section 2].
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3. Combinatorial representation

Recall that the quantum groups Uq(sp2n), uq(sp2n, are generated as k-algebras
by the grouplike elements

g1, g2, . . . , gn, f1, f2, . . . , fn, ∆(gi) = gi ⊗ gi, ∆(fi) = fi ⊗ fi,
by their inverses, and by the skew primitive elements x1, x2, . . . , xn, x

−
1 , x

−
2 , . . . , x

−
n ,

∆(xi) = xi ⊗ 1 + gi ⊗ xi; ∆(x−i ) = x−i ⊗ 1 + fi ⊗ x−i .
Whereas all the grouplike elements commute each with other, the skew primitive
generators commute with the grouplikes via

xigj = pijgjxi, x
−
i gj = p−1

ij gjx
−
i , xifj = pjifjxi, x

−
i fj = p−1

ji fjx
−
i ,

where pij are arbitrary parameters satisfying the following relations

pii = q, 1 ≤ i < n; pi i−1pi−1 i = q−1, 1 < i < n; pijpji = 1, j > i+ 1;

pnn = q2 pn−1n pnn−1 = q−2.

The group G of the grouplike elements may satisfy arbitrary additional relations
that are compatible with the above commutation rules (for example, if pij = pji
for all i, j then one may additionally suppose that fi = gi).

Let G〈X ∪X−〉 be the Hopf algebra defined as above with free skew primitives
xi, x

−
i . Then we have Hopf algebra morphisms

ϕ : G〈X ∪X−〉 → Uq(sp2n), ϕ1 : G〈X ∪X−〉 → uq(sp2n).

By its definition, the ideal kerϕ is generated by the elements

µij
df
= xix

−
j − pjix

−
j xi − δ

j
i (1− gifi)

and the quantum Serre polynomials

Sij(xi, xj), Sij(x
−
i , x

−
j ), 1 ≤ i, j ≤ n.

It is important here that all of these elements are skew primitive in G〈X ∪ X−〉;
see [11, Theorem 6.1]. In the explicit form the polynomials Sij(xi, xj) are:

(3.1) [xi, [xi, xi+1]] = [[xi, xi+1], xi+1] = 0, 1 ≤ i < n− 1; [xi, xj ] = 0, j > i+ 1;

(3.2) [[xn−1, xn], xn] = [xn−1, [xn−1, [xn−1, xn]]] = 0.

The ideal kerϕ1 is generated by µij and the two sets Λ, Λ−, see Subsection 2.2.

4. Hard super-letters and PBW basis

We shall concentrate on the positive quantum Borel subalgebra, the subalgebra
generated over G by by the xi’s.

On the set of all words in the xi’s we fix the lexicographical order with the
priority from the left to the right considering x1 > x2 > . . . > xn, where a proper
beginning of a word is considered to be greater than the word itself.

A non-empty word u is called a standard word (Lyndon word, Lyndon-Shirshov
word) if vw > wv for each decomposition u = vw with non-empty v, w. A nonasso-
ciative word is a word where brackets [, ] somehow arranged to show how multipli-
cation applies. If [u] denotes a nonassociative word, then u denotes an associative
word obtained from [u] by removing the brackets. The set of standard nonasso-
ciative words is the biggest set SL that contains all variables xi and satisfies the
following properties.



COMBINATORIAL RANK OF QUANTUM GROUPS OF INFINITE SERIES 5

1) If [u] = [[v][w]] ∈ SL, then [v], [w] ∈ SL, and v > w are standard.
2) If [u] = [ [[v1][v2]] [w] ] ∈ SL, then v2 ≤ w.

Every standard word has only one arrangement of brackets such that the appeared
nonassociative word is standard (Shirshov theorem [15]). In order to find this
arrangement one may use the following inductive procedure:

Algorithm. The factors v, w of the nonassociative decomposition [u] = [[v][w]] are
the standard words such that u = vw and v has the minimal length ([16], see also
[13]).

Definition 4.1. A super-letter is a polynomial that equals a nonassociative stan-
dard word where the brackets are defined as follows [u, v] = uv − p(u, v)vu, while
p(u, v) is a bimultiplicative map, see (2.3), defined on words so that p(xi, xj) = pij .
A super-word is a word in super-letters.

By Shirshov’s theorem every standard word u defines only one super-letter, in
what follows we shall denote it by [u]. The order on the super-letters is defined in
the natural way: [u] > [v] ⇐⇒ u > v.

Definition 4.2. In what follows we fix a homogeneous in each xi bi-ideal J of
G〈X〉 such that kerϕ ∩G〈X〉 ⊆ J ⊆ Λ.

By [5, Lemma 2.2] the bi-ideal Λ itself is homogeneous.

Definition 4.3. A super-letter [u] is called hard in G〈X〉/J provided that its value
in G〈X〉/J is not a linear combination of values of super-words in smaller than [u]
super-letters.

Definition 4.4. We say that a height of a hard super-letter [u] in G〈X〉/J equals
h = h([u]) if h is the smallest number such that: first, p(u, u) is a primitive s-th
root of 1 and either h = s or h = slr, where l =char(k); and next the value of [u]h

in G〈X〉/J is a linear combination of super-words in less than [u] super-letters. If
there exists no such a number, the height is infinite.

Theorem 4.5. ([10, Theorem 2]). The values of all hard in G〈X〉/J super-letters
with the above defined height function form a set of PBW-generators for G〈X〉/J
over k[G]; that is, the set of all products

g[u1]n1 [u2]n2 · · · [uk]nk , [u1] < [u2] < . . . < [uk], ni < h([ui]), g ∈ G

form a basis of G〈X〉/J.

The hard super-letters for U+
q (sp2n) are described in [9, Theorem Cn].

Definition 4.6. In what follows, xi, n < i < 2n denotes the generator x2n−i.
Respectively, v(k,m), 1 ≤ k ≤ m < 2n is the word xkxk+1 · · ·xm−1xm. If 1 ≤ i <
2n, then φ(i) denotes the number 2n− i, so that xi = xφ(i).

The word v(k,m) is standard if and only if k ≤ m < φ(k) or k = m = n. The
standard arrangement of brackets, [v(k,m)], is described in [9, Lemma 7.18]. In [7,
Proposition 4.1], it is shown that the value of [v(k,m)] in U+

q (sp2n) coincides with
the value of the long skew commutator

v[k,m] = [[. . . [[xk, xk+1], xk+2] . . . xm−1], xm], k ≤ m < φ(k).
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Following [7, p. 21] we define the bracketing of v(k,m), k ≤ m < 2n as follows:

(4.1) v[k,m] =

[[[. . . [xk, xk+1], . . .], xm−1], xm], if m < φ(k);
[xk, [xk+1, [. . . , [xm−1, xm] . . .]]], if m > φ(k);
[[v[k,m− 1], xm]], if m = φ(k),

where in the latter term, [[u, v]]
df
= uv − q−1p(u, v)vu.

By [7, Theorem 5.1] the coproduct on the elements v[k,m], k ≤ m < 2n has the
following explicit form:

(4.2) ∆(v[k,m]) = v[k,m]⊗ 1 + gkm ⊗ v[k,m]

+

m−1∑
i=k

τi(1− q−1)gki v[i+ 1,m]⊗ v[k, i],

where τi = 1 with two exceptions, being τn−1 = 1 + q−1 if m = n, and τn = 1 + q−1

if k = n. Here gki = gr(v(k, i)) = gkgk+1 · · · gi.
Conditional identity (2.5) implies that the value of v[k,m] in U+

q (sp2n) is inde-
pendent of the precise arrangement of brackets, provided that m ≤ n or k ≥ n. In
general, the value of bracketed word v[k,m] is almost independent of the precise
arrangement of brackets.

Lemma 4.7. ([7, Lemma 3.6]). If k ≤ n ≤ m < φ(k), then the value in U+
q (sp2n)

of the bracketed word [ykxnxn+1 · · ·xm], where yk = v[k, n − 1], is independent of
the precise arrangement of brackets.

Lemma 4.8. ([7, Lemma 3.7]). If k ≤ n, φ(k) < m, then the value in U+
q (sp2n)

of the bracketed word [xkxk+1 · · ·xnym], where ym = v[n+ 1,m], is independent of
the precise arrangement of brackets.

Definition 4.9. We define the words vk, 1 ≤ k ≤ n as follows:

vk = v(k, n− 1)v(k, n) = xkxk+1 . . . xn−1xkxk+1 . . . xn−1xn, vn = xn.

Certainly, these are standard words and the standard arrangement of brackets is
[vk] = [[v(k, n− 1)][v(k, n)]].

Proposition 4.10. ([9, Theorem Cn]). If q3 6= 1, q 6= −1, then the set

(4.3) C = {[v(k,m)], [vs] | k ≤ m < φ(k), 1 ≤ s ≤ n}

is the set of all hard super-letters for U+
q (sp2n).

5. PBW-generators for u+
q (sp2n)

Now we are going to demonstrate that the set C are hard super-letters for
u+
q (sp2n) as well.

Recall that degi(w), 1 ≤ i ≤ n denotes a degree in xi of the word w, the number
of occurrences of xi in w. Respectively, D(w) = (deg1(w),deg2(w), . . . ,degn(w)) is
a multidegree of w.

Lemma 5.1. If [w] ∈ C, then sD(w) is not a sum of multidegrees D(u) of lesser
than [w] elements [u] ∈ C. Here s is an arbitrary natural number.
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Proof. Let w = v(k,m), k ≤ m < φ(k). If [u] ∈ C and u < v(k,m), then either
degk(u) ≤ 1 or u contains a letter that does not occur in w. Certainly, in the latter
case D(u) may not appear in the decomposition of sD(w) in the sum.

Hence, at least s super-letters [u] with degk(u) = 1 appear in the decomposition.
At the same time, all such super-letters are in the list

(5.1) [v(k,m+ 1)], [v(k,m+ 2)], . . . , [v(k, φ(k)− 1)].

If m < n, then [v(k,m)] belongs to the Hopf subalgebra generated by the elements
x1, x2, . . . , xn−1. In this case, the above list of hard super-letters reduces to

[v(k,m+ 1)], [v(k,m+ 2)], . . . , [v(k, n− 1)].

All elements in this list, if any, depend on xm+1, whereas [v(k,m)] is independent
of it.

If m ≥ n, then all super-letters from the list (5.1) are of degree 2 in xm+1.
Therefore, the (m+1)th component of the sum of s multidegrees of that type is 2s.
However, the (m+1)th component of sD(v(k,m)) equals s. Thus, the decomposition
is still impossible.

Assume w = vk, 1 ≤ k < n. In this case the list (5.1) take the form

[v(k, n)], [v(k, n+ 1)], . . . , [v(k, φ(k)− 1)].

All words in this list are linear in xk and in xn. Hence the kth component of∑
D(u) is less than or equal to the nth component of it. At the same time, the

kth component of sD(vk) equals 2s, and the nth component is s. �

Lemma 5.2. If a standard word w is independent of xn, then either w = v(k,m),
k ≤ m < n or [w] = 0 in U+

q (sp2n).

Proof. Subalgebra generated by x1, x2, . . . xn−1 is the quantization of type An−1.
Hence [9, Theorem An case 3] applies. �

Lemma 5.3. If k + 1 < i ≤ n, then [v[k, φ(i)− 1], xi−1] = 0.

Proof. If i = n, then

[v[k, φ(i)− 1], xi−1] = [[v[k, n− 2], xn−1], xn−1] = 0

due to the relations [[xn−2, xn−1], xn−1] = 0 and [xj , xn−1] = 0, j < n− 2.
Assume i < n. By Lemma 4.8, we have v[k, φ(i) − 1] = [v[k, n − 1], y], where

y = v[n + 1, φ(i) − 1]. In this case, [y, xi−1] = 0 due to the defining relations
[xj , xi−1] = 0, i < j ≤ n, whereas

[v[k, n− 1], xi−1] = [v[k, i− 3], [v[i− 2, n− 1], xi−1]] = 0

because the standard word v(i−2, n−1)xi−1 is independent of xn and the standard
bracketing is precisely [v[i− 2, n− 1], xi−1]. �

Lemma 5.4. If i 6= k, then ∂i(v[k,m]) = 0, k ≤ m < φ(k).

Proof. If an element u is independent of xi then, of course, ∂i(u) = 0. The Leibniz
formula (2.9) implies

∂i([u, xi]) = ∂i(uxi)− p(u, xi)∂i(xiu) = p(u, xi)u · ∂i(xi)− p(u, xi)∂i(xi) · u = 0,

provided that ∂i(u) = 0. It remains to apply definition (4.1) of the bracketed word
v[k,m]. �

Lemma 5.5. We have ∂k(v[k,m]) ∼ v[k + 1,m] provided that k < m < φ(k).
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Proof. If m = k + 1, then

∂k([xk, xk+1]) = ∂k(xkxk+1)− p(xk, xk+1)∂k(xk+1xk)

= xk+1 − p(xk, xk+1)p(xk+1, xk)xk+1 = (1− q−ε)xk+1,

where ε = 1 or ε = 2. In the general case, we may perform the evident induction:

∂k(v[k,m]) = ∂k([v[k,m− 1], xm])

= ∂k(v[k,m− 1]xm)− p(v(k,m− 1), xm)∂k(xmv[k,m− 1])

= αv[k + 1,m− 1]xm − p(v(k,m− 1), xm)p(xm, xk)xm(αv[k + 1,m− 1]).

If k+1 < m < φ(k)−1, then p(xk, xm)p(xm, xk) = 1 and the above linear combina-
tion equals α[v[k+1,m−1], xm] = αv[k+1,m], which is required. If m = φ(k)−1,
then p(xk, xm)p(xm, xk) = q−1 and we arrive to αv[k+1, φ(k+1)] due to (4.1). �

Lemma 5.6. In the algebra U+
q (sp2n), we have

(5.2) [ v[k,m], [v[k,m], ∂k(v[k,m])] ] = 0, k ≤ m ≤ φ(k)− 2.

Proof. Consider the word w = v(k,m)v(k,m)v(k+ 1,m). This is a standard word,
and the standard arrangement of brackets given by the Algorithm p. 5 is precisely

[ [v(k,m)] [ [v(k,m)] [v(k + 1,m)] ] ] .

By Proposition 4.10, all hard super-letters in U+
q (sp2n) are

(5.3) [v(s, r)], 1 ≤ s ≤ r < φ(s); [vs], 1 ≤ s ≤ n.
In particular, [w] is not hard. If m < n, then Lemma 5.2 applies. Assume m ≥ n.
The multiple use of Definition 4.3 demonstrates that the value of [w] is a linear com-
bination of super-words in smaller than [w] hard super-letters. Because U+

q (sp2n)
is homogeneous, the hard super-letters that may appear in the linear combination
are

[v(k, r)], m < r < φ(k); [v(s, r)], k < s ≤ r < φ(s), [vr], k < r ≤ n.
In the above list, all super-letters that depend on xk have degree 2 in xm+1 and
degree 1 in xk. At the same time w has degree 2 in xk and degree 3 in xm+1.
Therefore the linear combination is empty, [w] = 0. �

Lemma 5.7. In the algebra U+
q (sp2n), we have

(5.4) [v[k, φ(k)− 1], ∂k(v[k, φ(k)− 1])] = 0, 1 ≤ k < n.

Proof. If k = n − 1, then the required relation reduces to the defining relation
[[[xn−1]xn], xn] = 0.

Assume k < n−1. By Lemma 5.5 the element ∂k([v(k, φ(k)−1)]) is proportional
to

v[k + 1, φ(k + 1)] = [[v[k + 1, φ(k)− 2], xk+1]].

Hence, it suffices to prove two equalities:

[v[k, φ(k)− 1], xk+1] = 0, [v[k, φ(k)− 1], v[k + 1, φ(k)− 2]] = 0.

Consider the word w = v(k, φ(k)− 1)xk+1. This is a standard word, and it does
not appear in the list (5.3). Therefore the value of [w] in U+

q (sp2n) is a linear
combination of super-words in smaller than w hard super-letters. Since w is linear
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in xk, it follows that each term of the linear combination has a hard super-letter
linear in xk which is less than [w]. But in the list (5.3) there does not exist such
a super-letter. Thus [w] = 0 in U+

q (sp2n). According to the Algorithm p. 5, the
standard arrangement of brackets in w is precisely [[v(k, φ(k)− 1)]xk+1].

Consider the word w1 = v(k, φ(k)− 1)v(k+ 1, φ(k)− 2). This is also a standard
word. The super-letter [w1] is not in the list (5.3). Therefore, the value of [w1]
in U+

q (sp2n) is a linear combination of super-words in smaller than w1 hard super-
letters. Since w is linear in xk, it follows that each term of the linear combination
has a hard super-letters linear in xk which is less than [w1]. In the list (5.3), there
does not exist such a super-letter, hence [w1] = 0 in U+

q (sp2n).
According to the Algorithm, the standard arrangement of brackets in w is

(5.5) [v(k, φ(k)− 2)][xk+1[v(k + 1, φ(k)− 2)]].

To correct the arrangement of brackets, we may use the conditional identity (2.5).
To this end, consider the word

w2 = v(k, φ(k)− 2)v(k + 1, φ(k)− 2).

The super-letter [w2] is not in the list (5.3). Therefore the value of [w2] in U+
q (sp2n)

is a linear combination of super-words in smaller than w2 hard super-letters.
Since in the list (5.3) there does not exist a linear in xk super-letter which is less

than [w2], it follows that [w2] = 0 in U+
q (sp2n). It remains to note that according to

the Algorithm, the standard arrangement of brackets in w2 has the required form
[[v(k, φ(k)− 2)][v(k + 1, φ(k)− 2)]]. �

Lemma 5.8. In the algebra U+
q (sp2n), we have

(5.6) [[vk], ∂k([vk])] = 0, 1 ≤ k < n.

Proof. Denote for short u = [v(k, n − 1)], v = [v(k, n)], u′ = ∂k(u), v′ = ∂k(v). In
this case by definition [vk] = [u, v]. By means of Leibniz formula (2.9), we have

∂k([vk]) = ∂k(uv)− p(u, v)∂k(vu)

(5.7) = u′v + p(u, xk)uv′ − p(u, v)v′u− p(u, v)p(v, xk)vu′.

First, we note that [vk] skew commutes with the first an the last terms of the
above linear combination. To this end, it suffices to check the equalities

(5.8) [[vk], v] = [[vk], u′] = 0.

Consider the word vkv = v(k, n− 1)v(k, n)v(k, n). This is a standard word, and
the standard arrangement of brackets (see Algorithm p. 5) is precisely

[[v(k, n− 1)v(k, n)]v(k, n)].

This word does not belong to the list (5.3), hence [[vk]v] is not hard. The multiple
use of Definition 4.3 demonstrates that the value of [vkv] is a linear combination of
super-words in smaller than [vkv] hard super-letters. Because U+

q (sp2n) is homo-
geneous, the hard super-letters that may appear in the linear combination are

(5.9) [v(k,m)], n ≤ m < φ(k); [v(s,m)], k < s ≤ m < φ(s), [vr], k < r ≤ n.
Each of that super-letter is either independent of xk or linear both in xk and xn.
Since vkv is of degree 3 in xk and of degree 2 in xn, it follows that the linear
combination is empty; that is, [[vk]v] = 0 in U+

q (sp2n).
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Consider the word w1 = vkv(k + 1, n − 1). This is also a standard non hard
word, therefore its value is a linear combination of super-words in smaller than w1

hard super-letters. The super-letters that may appear in the linear combination
are the same (5.9). As we have noted before, each of that super-letter is either
independent of xk or linear both in xk and xn. Since vkv(k + 1, n− 1) is of degree
2 in xk and of degree 1 in xn, it follows that the linear combination is empty; that
is, [vkv(k + 1, n− 1)] = 0 in U+

q (sp2n).
In this case, the standard arrangement of brackets due to the Algorithm p. 5 is

[v(k, n− 1)[v(k, n)v(k + 1, n− 1)]] but not the required

[[v(k, n− 1)v(k, n)] [v(k + 1, n− 1)]].

Nevertheless, we may apply the conditional identity (2.5) because

[[v(k, n− 1)], [v(k + 1, n− 1)]] = 0

due to Lemma 5.2. Since ∂k(u) ∼ [v(k + 1, n− 1)], it follows that [[vk], u′] = 0.
Let us turn to the second and the third terms of (5.7). We have

p(u, xk)uv′ − p(u, v)v′u = p(u, xk)[u, v′].

Therefore, it remains to prove the equality [[vk], [u, v′]] = 0.
Consider the word w2 = v(k, n−1)v(k, n)v(k, n−1)v(k+1, n). This is a standard

word. Therefore the value of [w2] in U+
q (sp2n) is a linear combination of super-words

in smaller than w2 hard super-letters. The super-letters that may appear in the
linear combination are precisely (5.9), that are either independent of xk or linear
both in xk and xn. Since w2 is of degree 3 in xk and of degree 2 in xn, it follows
that the linear combination is empty; that is, [w2] = 0 in U+

q (sp2n).
The standard arrangement of brackets [w2] is

[[v(k, n− 1)v(k, n)][xk[v(k + 1, n− 1)v(k + 1, n)]]]

that differs from the required

[[v(k, n− 1)v(k, n)][[xkv(k + 1, n− 1)][v(k + 1, n)]]].

Using the quantum Jacobi identity (2.4) with

u← xk, v ← [v(k + 1, n− 1)], w ← [v(k + 1, n)],

we see that

[[xk, [v(k + 1, n− 1)]], [v(k + 1, n)]]

is a linear combination of the following three terms

[xk[v(k+ 1, n− 1)v(k+ 1, n)]], [v(k, n)] · [v(k+ 1, n− 1)], [v(k+ 1, n− 1)] · [v(k, n)].

Equality [w2] = 0 implies that the element [vk] skew commutes with the first term.
Relations (5.8) demonstrate that [vk] skew commutes with [v(k, n)] and also with
[v(k + 1, n− 1)]. �

Lemma 5.9. If 1 ≤ i ≤ n, k < m < φ(k), then we have

∂∗i (v[k,m]) ∼
{
v[k,m− 1], if m = i or m = φ(i);
0, otherwise.
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Proof. If an element u is independent of xi, then, of course, ∂∗i (u) = 0. If ∂∗i (u) = 0,
then the Leibniz formula (2.10) implies

(5.10) ∂∗i ([u, xi]) = ∂∗i (uxi)− p(u, xi)∂∗i (xiu) = (1− p(u, xi)p(xi, u))u.

In particular, taking u = v[k, i− 1], we obtain the required formula for m ≤ i.
If xj 6= xi, then again by the Leibniz formula (2.10), we have

(5.11) ∂∗i ([u, xj ]) = ∂∗i (uxj)− p(u, xj)∂∗i (xju) = p(xi, xj)[∂
∗
i (u), xj ].

In particular, taking u = v[k, i], j = i+ 1 and using the evident relation

[v[k, i− 1], xi+1] = 0, i ≤ n,

we obtain the required ∂∗i (v[k, i + 1]) = 0, and then step-by-step the relations
∂∗i (v[k,m]) = 0, i < m < φ(i).

Further, the substitution u← v[k, φ(k)−1] in (5.10) implies the required formula
with m = φ(i). Then, substitution u ← v[k, φ(i)], j = i − 1 in (5.11) demonstrate
that ∂∗i (v[k, φ(i) + 1]) is proportional to [v[k, φ(i)− 1], xi−1], which is equal to zero
due to Lemma 5.3 because condition φ(i) + 1 < φ(k) implies k + 1 < i. Thus the
required formula is valid for m = φ(i) + 1 < φ(k). Now, step-by-step, using (5.11),
we have ∂∗i (v[k,m]) = 0, φ(i) < m < φ(k). �

Lemma 5.10. If 1 ≤ k < n, then

∂∗i ([vk]) ∼
{
v[k, n− 1]2, if i = n;
0, otherwise.

Proof. Denote u = v[k, n−1], and v = v[k, n]. In this case, [vk] = [u, v]. By Lemma
5.9 and the Leibniz formula (2.10), we have ∂∗i ([vk]) = 0 if i < n− 1.

If i = n− 1, then ∂∗i (u) ∼ v[k, n− 2] and ∂∗i (v) = 0. The Leibniz formula (2.10)
yields

∂∗i ([vk]) ∼ p(xn−1, v)v[k, n− 2] · v − p(u, v)v · v[k, n− 2] = p(xn, v)[v[k, n− 2], v].

In this formula, if k = n− 1, one has to replace v[k, n− 2] with 1, and the resulting
expression becames 0. In general case, still

[v[k, n− 2], v] = [v[k, n− 2], [v[k, n− 1], xn]] = [[v[k, n− 2], v[k, n− 1]], xn] = 0

because, first, [[v[k, n − 2], xn] = 0, and, next, [v[k, n − 2], v[k, n − 1]] = 0 as the
word v(k, n− 2)v(k, n− 1) is standard and independent of xn (see, Lemma 5.2).

Assume i = n. In this case, ∂∗i (u) = 0 and ∂∗i (v) ∼ u. Using the Leibniz formula
(2.10), we obtain the required relation ∂∗i ([vk]) ∼ u2. �

Lemma 5.11. If 1 ≤ i ≤ n, k < m < φ(k), m 6= n, then

[∂∗i (v[k,m]), v[k,m]] = 0.

Proof. By Lemma 5.9, we have to demonstrate that [v[k,m− 1], v[k,m]] = 0. The
word w = v(k,m − 1)v(k,m) is standard with standard arrangement of brackets
[w] = [[v(k,m − 1)][v(k,m)]]. If m < n, then w is independent of xn and Lemma
5.2 implies [w] = 0.
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If m > n, then [w] still is not a hard super-letter. Therefore its value is a linear
combination of super-words in smaller than [w] hard super-letters. The smaller
hard super-letters are:

[v(k, r)], m ≤ r < φ(k); [v(s, r)], k < s < r < φ(s); [vr], k < r < n.

Each of them is either independent of xk or linear in xk and of degree 2 in xm. At
the same time w has degree 2 in xk and degree 3 in xm. hence the linear combination
is empty, and [w] = 0. �

Lemma 5.12. If 1 ≤ i ≤ n, then

[[∂∗i (v[k, n]), v[k, n]], v[k, n]] = 0.

Proof. By Lemma 5.9, we have to demonstrate that [[v[k, n−1], v[k, n]], v[k, n]] = 0.
This equality is already proven, see (5.8). �

Lemma 5.13. If 1 ≤ i ≤ n, then

[∂∗i ([vk]), [vk]] = 0.

Proof. By Lemma 5.10, we have to consider just one case i = n. In this case,
∂∗i ([vk]) ∼ v[k, n−1]2. Therefore it suffices to demonstrate that [v[k, n−1], [vk]] = 0.

Consider the word w = v(k, n − 1)v(k, n − 1)v(k, n). This is a standard word
with the following standard arrangement of brackets:

[w] = [v(k, n− 1)[v(k, n− 1)v(k, n)]].

Since [w] is not a hard super-letter, it follows that its value is a linear combination
of super-words in smaller than [w] hard super-letters:

[v(k, r)], n ≤ r < φ(k); [v(s, r)], k < s < r < φ(s); [vr], k ≤ r < n.

The word w is linear in xn and of degree 3 in xk, whereas all words in the above
list which depend on xk have degree 1 or 2 in x2 and degree 1 in xn. Thus, the
linear combination is empty, and [w] = 0. �

Theorem 5.14. If the multiplicative order t of q is finite, t > 3, then the values of

v[k,m], k ≤ m < φ(k), [vs], 1 ≤ s ≤ n
form a set of PBW-generators for u+

q (sp2n) over k[G]. The height of v[k,m], equals
t. The height h of [vs], 1 ≤ s ≤ n equals t if t is odd, otherwise h = t/2. In all cases
v[k,m]t = 0, [vs]

h = 0 in u+
q (sp2n).

Proof. First, we note that Definition 4.3 implies that a non-hard super-letter in
U+
q (sp2n) remains non-hard in u+

q (sp2n). Hence, all hard super-letters for u+
q (sp2n)

are in the list (4.3).
Next, if [v(k,m)], k ≤ m < φ(k) is not hard in u+

q (sp2n), then by the multiple
use of Definition 4.3, the value of [v(k,m)] is a linear combination of super-words
in hard super-letters smaller than given v(k,m). Because u+

q (sp2n) is homogeneous,
each of the super-words M in that decomposition has a hard super-letter smaller
than v(k,m) and of degree 1 in xk. At the same time, all such super-letters are in
the list

[v(k,m+ 1)], [v(k,m+ 2)], . . . , [v(k, φ(k)− 1)].
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Each of them has degree 2 in xm+1 if m ≥ n, and at least 1 if m < n. Hence
the super-word M has degree of at least 2 if m ≥ n, and at least 1 if m < n.
However u(k,m) is of degree 1 in xm+1 if m ≥ n, and is independent of xm+1

if m < n. Therefore the decomposition is empty, and [v(k,m)] = 0 in u+
q (sp2n).

Nevertheless, all elements v[k,m] are nonzero in u+
q (sp2n) because by Lemma 5.9

we have ∂∗m(v[k,m]) ∼ v[k,m− 1], and evident induction applies.
Similarly, if [vk] is not hard in u+

q (sp2n), then its value is a linear combination
of super-words in hard super-letters smaller than vk. Each of the super-words M
in that decomposition has a hard super-letter of degree 2 in xk or at least two
hard super-letters of degree 1 in xk because the degree of vk in xk equals 2 (unless
k = n). All possible super-letters of M are in the list

[v(k, n)], [v(k, n+ 1)], . . . , [v(k, φ(k)− 1)].

No one of them has degree 2 in xk, and each of them has degree 1 in xn. Hence
M is of degree at least 2 in xn. However [vk] is of degree 1 in xn. Therefore the
decomposition is empty, and [vk] = 0 in u+

q (sp2n).

By Lemma 5.10 we obtain v[k, n − 1]2 ∼ ∂∗n([vk]) = 0. Using Leibniz formula
(2.10), we have 0 = (∂∗n−1)2(v[k, n − 1]2) ∼ v[k, n − 2]2 unless q = −1. Applying
operator (∂∗n−2)2 we find v[k, n − 3]2 = 0, and so on. Finally, x2

k 6= 0 in u+
q (sp2n)

because ∂k(x2
k) ∼ xk 6= 0.

Let us find the heights of hard super-letters in u+
q (sp2n).

For short we put v = v[k,m], u = [vk]. Applying [7, Lemma 3.5], we have pvv = q
and puu = q2. By Definition 4.4 the minimal possible value for the height is precisely
the h given in the proposition. It remains to show that vt = 0, uh = 0 in u+

q (sp2n).
By Lemma 2.3 it suffices to prove that all partial derivatives of the related

elements are zero. Lemma 2.2 yields

∂i(v
t) = p(v, xi)

t−1 [v, [v, . . . [v︸ ︷︷ ︸
t−1

, ∂i(v)] . . .]].

∂i(u
h) = p(u, xi)

h−1 [u, [u, . . . [u︸ ︷︷ ︸
h−1

, ∂i(u)] . . .]].

It remains to apply Lemma 5.4, Lemma 5.6, Lemma 5.7 and Lemma 5.8. �

6. Defining relations for G〈X〉/J

We are reminded that an ideal J is given in Definition 4.2 as an arbitrary ho-
mogeneous intermediate ideal, whereas the set C of hard in U+

q (sp2n) and u+
q (sp2n)

super-letters is defined in (4.3).

Proposition 6.1. The values in G〈X〉/J of the set C form a set of PBW-generators
for G〈X〉/J over k[G]. The ideal J is uniquely defined by the heights of C. More
precisely, J is generated by relations of U+

q (sp2n) and [w]h, where [w] ∈ C and h is
the height of [w] in G〈X〉/J.
Proof. The definition of the hard super-letter implies that a hard in G〈X〉/Λ =
u+
q (sp2n) super-letter is hard in G〈X〉/J, whereas a hard in G〈X〉/J one is hard in

U+
q (sp2n). Hence, C is the set of all hard in G〈X〉/J super-letters.
By Theorem 4.5, the values of C form a set of PBW-generators (with some height

function) for G〈X〉/J over k[G]; that is, the set of all products

g[w1]n1 [w2]n2 · · · [wk]nk , [w1] < [w2] < . . . < [wk], ni < h([wi]), g ∈ G



14 V.K. KHARCHENKO, M. L. DÍAZ SOSA

form a basis of G〈X〉/J.
If h = h([w]) is the height of [w] in G〈X〉/J, then by definition, the value of [w]h

in G〈X〉/J is a linear combination of super-words in hard super-letters smaller
than [w]. Because J is homogeneous, the multidegree of each super-word M in
that decomposition equals the multidegree of wh. Lemma 5.1 states that this is
impossible. Therefore the decomposition is empty, and [w]h = 0 in G〈X〉/J ; that
is, [w]h ∈ J.

Finally, let J ′ be the ideal generated by relations of U+
q (so2n) and [w]h, where

[w] ∈ C, while h is the height of [w] inG〈X〉/J. By Theorem 4.5 applied to U+
q (sp2n),

the set of all products

g[w1]n1 [w2]n2 · · · [wk]nk , [w1] < [w2] < . . . < [wk], [wi] ∈ C, g ∈ G

form a basis of U+
q (sp2n). Hence values of that elements with additional restriction,

ni < h([wi]), span G〈X〉/J ′. Since the products with that restriction are linearly
independent in G〈X〉/J, and J ′ ⊆ J, it follows that they are still linearly inde-
pendent in G〈X〉/J ′. In other words, G〈X〉/J ′ and G〈X〉/J have the same basis,
therefore J ′ = J. �

Corollary 6.2. Each homogeneous skew-primitive in G〈X〉/J element u of total
degree > 1 has the form u = α[w]h, α ∈ k, where [w] ∈ C. If t is odd or w = v(k,m),
then h = t or h = tls in the case of characteristic l > 0. If t is even and w = vk,
then h = t/2 or h = (t/2)ls in the case of characteristic l > 0.

Proof. By [9, Lemma 4.9] (essentially proven in [10, Lemmas 12, 13]), the decompo-
sition of u in the PBW-basis has the form u = α[w]h+

∑
i αiWi, where Wi are basis

super-words in less than [w] hard super-letters. In Proposition 5.1, it is proven that
the multidegree of [w]h is not a sum of multidegrees of lesser than [w] super-letters
from C. Therefore, u = α[w]h.

If t is odd or w = v(k,m), then p(w,w) = q (see [7, Lemma 3.5]) and due to sited
above [9, Lemma 4.9] the exponent h is t, or 1, or tls in the case of characteristic
l > 0. If t is even and w = vk, then p(w,w) = q2 which implies that the exponent h
may have only values t/2, (t/2)ls, or 1. No one of [w], w 6= xi is skew-primitive in
G〈X〉/Λ because each of them has nonzero partial derivatives; that is, h 6= 1. �

7. Constants of differential calculi

Let A be a subalgebra of U+
q (sp2n) generated by the xi’s, and let

C = {u ∈ A | ∂i(u) = 0, 1 ≤ i ≤ n}

be the subalgebra of constants for calculus (2.9), whereas

C∗ = {u ∈ A | ∂∗i (u) = 0, 1 ≤ i ≤ n}

be the subalgebra of constants for calculus (2.10). Because the operators ∂i ∂
∗
i

diminish degree in xi of every monomial by one and do not change the degree in
other variables, both subalgebras are homogeneous in each variable. By means of
the substitution u ← C∗ in (2.14) we have σb(C∗) ⊆ C. Similarly the substitution
u← (σb)−1(C) implies (σb)−1(C) ⊆ C∗; that is, C = σb(C∗).

Theorem 7.1. The following statements are valid.
1. The algebra C is generated by the elements v[k,m]t, k ≤ m < φ(k), [vk]h,

1 ≤ k < n, where h = t if t is odd and h = t/2 if t is even.



COMBINATORIAL RANK OF QUANTUM GROUPS OF INFINITE SERIES 15

2. We have [f, v[k,m]t] = [v[k,m]t, f ] = 0 and [f, [vk]h] = [[vk]h, f ] = 0 for all
homogeneous f ∈ A.

3. C = C∗.
4. A subalgebra GC of U+

q (sp2n) generated by G and C is a Hopf subalgebra.

5. U+
q (sp2n) is a free finitely generated module over GC of rank tn

2

if t is odd

and of rank tn
2−n(t/2)n if t is even.

Proof. The proof is very similar to that of [4, Theorem 2]. Let us note, first, that
v[k,m]t, [vk]h ∈ C ∩ C∗. By Lemma 2.2 we have

∂i([w]t
′
) ∼ [[w], [[w], . . . [[w]︸ ︷︷ ︸

t′−1

, ∂i([w])] . . .]],

where t′ = t if w = v(k,m) or t is odd, and t′ = t/2 if w = vk and t is even.
Applying Lemma 5.4, Lemma 5.6, and Lemma 5.7, we obtain ∂i(v[k,m]t) = 0,
whereas Lemma 5.8 implies ∂i([vk]h) = 0.

Similarly, Lemma 2.2 and (2.13), (2.14) imply

∂∗i ([w]t
′
) ∼ [. . . [[∂∗i ([w]), [w]], [w]], . . . [w]]︸ ︷︷ ︸

t′−1

.

Applying Lemma 5.9, Lemma 5.11, and Lemma 5.12, we have ∂∗i (v[k,m]t) = 0.

Lemma 5.13 implies ∂∗i ([vk]h) = 0. Thus [w]t
′ ∈ C ∩ C∗ for all [w] ∈ C.

Using (2.12) let us note that C is a left coideal: ∆(C) ⊆ GA⊗C. If c ∈ C, then

0 = ∆(∂i(c)) =
∑
(c)

g−1
i c(1) ⊗ ∂i(c(2)).

Because g−1
i c(1) are linearly independent, we have ∂i(c

(2)) = 0, and c(2) ∈ C.
This implies that GC∗ = G(σb)−1(C) = Gσ−1(C) is a right coideal subalgebra

which contains the coradical k[G]. By [8, Theorem 4.1], the subalgebra GC∗ has a
PBW basis that can be extended up to a PBW basis of U+

q (sp2n).
The PBW generators may be chosen in the following way. For every [w] ∈ C, we

choose an arbitrary element, if any, with the minimal possible a of the form

(7.1) cw = [w]a +
∑
i

αiWiRi ∈ GC∗, αi ∈ k,

where the Wi’s are nonempty basis super-words in less than [w] super-letters,
whereas the Ri’s are basis super-words in greater than or equal to [w] super-letters.
According to [8, Lemma 4.3], the number a either equals 1, or p(w,w) is a primitive
rth root of 1 and a = r or (in the case of positive characteristic) a = r(chark)s.

In our case, p(w,w) = q is a primitive tth root of 1 if t is odd or w = v(k,m),
and p(w,w) = q2 is a primitive (t/2)th root of 1 if t is even and w = vk (see [7,
Lemma 3.5]). In both cases, a 6= 1 because otherwise due to Milinski–Schneider
criterion (Lemma 2.3), we have cw − α ∈ Λ, α ∈ k. However, this is impossible as
(7.1) with m = 1 is a linear combination of elements from PBW basis of u+

q (sp2n)
with the leading term [w].

Thus, we can choose cw = [w]h because we already know that [w]h ∈ C∗. In
particular, C∗ = GC∗ ∩ A as an algebra is generated by the elements cw = [w]h

with [w] ∈ C. Since all of that elements belong to C, it follows that C∗ ⊆ C.
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The map σ2 is an automorphism such that σ2(xi) = piixi, σ
2(gi) = gi. This

implies σ2(f) ∼ f for every homogeneous polynomial. Moreover,

(σb)2(f) = gr(f)σ(gr(f)σ(f)) = gr(f)fgr(f)−1 ∼ f
as well. Applying this proportion to f = [w]h, we have (σb)2(C∗) = C∗. Let us
apply σb to the the already proven relation C∗ ⊆ C = σb(C∗). We obtain

C = σb(C∗) ⊆ σb(C) = (σb)2(C∗) = C∗.

This completes the proof of 3 and 1.
Let a ∈ C. Using Leibniz rule (2.9), we have ∂i(xia) = a, whereas ∂i(axi) =

p(a, xi)a.Hence, ∂i([a, xi]) = p(a, xi)a−p(a, xi)a = 0. Because certainly ∂k([a, xi]) =
0, xk 6= xi, we get [a, xi] ∈ C and also [xi, a] = σb([a, xi]) ∈ C. At the same time,
the degree in xi of each generator [w]h is a multiple of h (which is t or t/2).
Therefore the degree in xi of each homogeneous constant is a multiple of t or t/2
also. However, degi([a, xi]) = degi([xi, a]) ≡ 1(mod t/2). This is possible only
if [a, xi] = [xi, a] = 0. Hence, all constants, particularly [w]h, [w] ∈ C, are skew
central. This proves 2.

We have seen above that C is a left coideal, and GC∗ is a right coideal. Since
C∗ = C = σb(C), it follows that the subalgebra GC is both a left and a right coideal
and it is invariant with respect to the antipode; that is, GC is a Hopf subalgebra,
which completes 4.

Finally, each element [w]r has a decomposition [w]r = [w]r0 · ([w]hw)g, 0 ≤ r0 <
hw. Hence, the products

∏
[w]∈C[w]kw , 0 ≤ kw < hw, form a basis of U+

q (sp2n) over

GC. The total number of such products is tn
2

if t is odd and it is tn
2−n(t/2)n if t

is even. �

Corollary 7.2. If [w] ∈ C, then the ideal Jw of U+
q (sp2n) generated by all elements

[u]hu with [u] ∈ C, u 6= w contains no one of the elements [w]b, b ≥ 1.

The proof literally coincides with the proof of [4, Corolary 2].

8. Combinatorial rank

Consider the chain that defines the combinatorial rank

J+
0 = G〈X〉 ∩ kerϕ ⊂ J+

1 ⊂ J
+
2 ⊂ . . . ⊂ J+

κ = Λ.

Proposition 8.1. All J+
i are homogeneous Hopf ideals. Let [w] ∈ C.

If w = v(k,m), then [w]h ∈ J+
i if and only if h ≥ t and m− k < 2i − 1.

If w = vk, and t is odd, then n− k < 2i−1 implies [w]t ∈ J+
i .

If w = vk, and t is even, then n− k < 2i − 1 implies [w]t/2 ∈ J+
i .

Proof. We perform induction on i. Let t′ = t/2 if t is even, and t′ = t otherwise.
Theorem Cn from [9] describes all skew primitive elements of U+

q (sp2n). They are

xi, x
t
i, x

til
r

i , 1 ≤ i < n, xn x
t′

n , x
t′lr

n , 1−g, g ∈ G and possibly some linear combina-
tions of these elements. Because all that elements are skew-primitive in G〈X〉, the

ideal J+
1 is generated by xt

′

n , x
t
i, 1 ≤ i < n and quantum Serre relations Sij(xi, xj)

given in (3.1) and (3.2). As a result, Corollary 7.2 implies that [v(k,m)]h ∈ J+
1 if

and only if k = m < n, h ≥ t, whereas [vk]h ∈ J+
1 if and only if k = n, h ≥ t′.

At the same time, m − k < 21 − 1 & m < φ(k) is equivalent to k = m < n; and
n − k < 21−1 means k = n. If t is even and w = vk, then n − k < 21−2 implies

k = n, and [vn]t/2 = x
t/2
n ∈ J1.
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Suppose that the statement is valid for J+
i−1. Corollary 6.2 implies that every

homogeneous skew primitive element of G〈X〉/J+
i−1 is proportional to [w]h with

[w] ∈ C, h = t or h = t/2. Because J+
i−1 is a homogeneous Hopf ideal, each

homogeneous component of a skew primitive element of G〈X〉/J+
i−1 is again skew

primitive. Thus, J+
i is generated by both J+

i−1 and all elements [w]h that are skew

primitive in G〈X〉/J+
i−1. In particular, J+

i is a homogeneous Hopf ideal.

Moreover, Corollary 7.2 implies that [w]h ∈ J+
i if and only if [w]h

′
, h′ ≤ h is in

the list of the skew primitives of G〈X〉/J+
i−1.

Let us demonstrate, first, that if m − k < 2i − 1 then [w]t with w = v(k,m) is
skew primitive in G〈X〉/J+

i−1. By Theorem 7.1 the subalgebra GC generated over G

by the elements Tu = [u]tu , [u] ∈ C is a Hopf subalgebra (here tu = t if u = v(k,m)
or t is odd, and tu = t/2 othrwise). Therefore there exists a decomposition

(8.1) ∆([w]t) =
∑
(c)

gr(c(2))c(1) ⊗ c(2),

such that c(1), c(2) are words (products) in Tu.
Assume that [w]t is not skew primitive in G〈X〉/J+

i−1. Let us fix a tensor c(1)⊗c(2)

with nonempty c(1) and c(2) which is not zero in G〈X〉/J+
i−1⊗G〈X〉/J

+
i−1. Certainly,

no one of the factors in c(1) ∼
∏
µ∈M1

[uµ]tµ and c(2) ∼
∏
µ∈M2

[uµ]tµ is zero in

G〈X〉/J+
i−1. Hence, by the inductive supposition we have mµ − kµ ≥ 2i−1 − 1, if

uµ = v(kµ,mµ), and n−kµ ≥ 2i−2 if uµ = vkµ and t is odd, whereas n−kµ ≥ 2i−1−1
if uµ = vkµ and t is even.

The total degree of the tensor equals the total degree of [w]t. At the same time,
the total degree of [uµ]tµ equals (mµ − kµ + 1)t if uµ = v(kµ,mµ), and it is

(2n− 2kµ + 1)t′ = (mµ − kµ + 1)t′,

where by definition we put mµ = φ(kµ) provided that uµ = vkµ . Hence, we have

(8.2) (m− k + 1)t =
∑

µ∈M1∪M2

(mµ − kµ + 1)tµ.

If t is odd, then tµ = t, and the above equality with conditions on m − k and
mµ − kµ imply

(8.3) 2i > m− k + 1 ≥ |M1 ∪M2| · 2i−1.

This is a contradiction because no one of the sets M1, M2 is empty.
If t is even and no one of uµ has the form vkµ , then we arrive to the same

contradiction (8.3). If uµ = vµ, then the degree in xn of [uµ]t/2 equals t/2. Since
degree in xn of [w]t either is zero or equals t, it follows that there exists a unique
ν ∈M1 ∪M2, ν 6= µ, such that uν = vkν . In this case, the equality (8.2) implies

(8.4) 2it > (m− k + 1)t ≥ (2n− 2kµ + 1)
t

2
+ (2n− 2kν + 1)

t

2
≥ (2i − 1)t,

and hence 2i > m − k + 1 ≥ 2i − 1. This inequality means m − k + 1 = 2i − 1,
whereas (8.4) becomes the equality

(2n− 2kµ + 1)
1

2
+ (2n− 2kν + 1)

1

2
= 2i − 1,

which is possible only if n − kµ and n − kν take minimal possible value (that is,
kµ = kν = n − 2i−1 + 1) and M1 ∪M2 = {µ, ν}. Since w = v(k,m) depends on
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xk, and is independent of xi, i < k, it follows that kµ = kν = k. But this is still

impossible because [v(k,m)]t is of degree t in xk, whereas [vk]t/2⊗[vk]t/2 is of degree
2t in xk.

Let n − k < 2i−1 and t is odd. We have to demonstrate that [vk]t is skew
primitive in G〈X〉/J+

i−1. The decomposition (8.1) with w = vk implies

(8.5) (2n− 2k + 1)t =
∑

µ∈M1∪M2

(mµ − kµ + 1)t ≥ |M1 ∪M2|2i−1t ≥ 2it.

Inequality 2i > 2n− 2k implies 2i > 2n− 2k + 1 because 2i is even, and we obtain
a contradiction 2i > 2i.

Let n− k < 2i − 1 and t is even. We shall prove that [vk]t/2 is skew primitive in
G〈X〉/J+

i−1. Consider the decomposition (8.1) with w = vk. The degree of [vk]t/2 in
xn equals t/2, therefore there exists one and only one µ, such that uµ = vkµ . Since
no one of sets M1, M2 is empty, it follows that there exists at least one ν, such that
uν = v(kν ,mν). In this case the equality (8.2) takes the form

(2n− 2k + 1)
t

2
= (2n− 2kµ + 1)

t

2
+ (mν − kν + 1)t+ · · · .

By the induction hypothesis, we have n − kµ ≥ 2i−1 − 1 and mν − kν ≥ 2i−1 − 1.
This implies a contradiction:

2i+1 − 1

2
>

2n− 2k + 1

2
≥ 2i − 1

2
+ 2i−1.

Next, we show that if m− k ≥ 2i− 1, k ≤ m < φ(k), then [w]t with w = v(k,m)
is not skew primitive in G〈X〉/J+

i−1. Let s be an arbitrary number less than n. We
shall analyze all tensors of the decomposition

∆([w]t) = (∆([w]))t =
∑
(c)

c(1) ⊗ c(2)

such that degs(c
(2)) = t, degs+1(c(2)) = 0. By the coproduct formula (4.2) each

tensor of that decomposition has the form

αga1a2 · · · at ⊗ b1b2 · · · bt,
where aλ = v[1 + iλ,m], bλ = v[k, iλ]. Because degs+1(bλ) = 0, we have iλ ≤ s.
Therefore the inequality s < n implies degs(bλ) ≤ 1. At the same time,

t∑
λ=1

degs(bλ) = degs(c
(2)) = t.

Hence, degs(bλ) = 1, all λ. In particular iλ ≥ s. Thus, iλ = s for all λ, and there is
only one tensor of the required degrees in the decomposition:

(8.6) αgtkg
t
k+1 · · · gts v[s+ 1,m]t ⊗ v[k, s]t, α 6= 0.

By the inductive supposition v[k, s]h /∈ J+
i−1 if s − k ≥ 2i−1 − 1. At the same

time, either v[s + 1,m] or σb(v[s + 1,m]) = v[φ(m), φ(s + 1)] belongs to C, unless
m = φ(s+1). Hence, again by the inductive supposition, v[s+1,m]t /∈ J+

i−1 provided

that m−s−1 ≥ 2i−1−1, m 6= φ(s+1). Denote smin = 2i−1−1+k, smax = m−2i−1

for short.
To show that [w]t is not skew primitive in G〈X〉/J+

i−1, it suffices to find at least
one point s satisfying s < n, m 6= φ(s+ 1) in the interval [smin, smax].
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This interval is not empty: smax−smin = m−k−2i+1 ≥ 0. We have smin+smax =
k +m− 1 ≤ 2n− 2 because m < φ(k).

If the interval contains at least two points, smin ≤ smax − 1, then 2smin ≤
smin + smax− 1 ≤ 2n− 3. Hence, smin ≤ n− 2; that is, the interval contains at least
two points satisfying s < n. One of them satisfies m 6= φ(s+ 1).

If the interval contains just one point, s = smin = smax, then m+s = m+smax =
2m−2i−1 is an even number (here of course i > 1). At the same time, m = φ(s+1)
is equivalent to m+ s+ 1 = 2n. Hence, m 6= φ(s+ 1). �

Theorem 8.2. The combinatorial rank of u+
q (sp2n) equals blog2(n− 1)c+ 2.

Proof. First, we note that J+
κ with κ = blog2(n − 1)c + 2 contains all elements

[v(k,m)]t, and [vk]t
′
.

Using the evident inequality a < 1 + bac, we have

m− k ≤ (φ(1)− 1)− 1 = 2n− 3 = 21+log2(n−1) − 1 < 22+blog2(n−1)c − 1,

and Proposition 8.1 implies that [v(k,m)]t ∈ J+
κ .

Similarly,

n− k ≤ n− 1 = 2log2(n−1) < 21+blog2(n−1)c = 2κ−1 ≤ 2κ − 1.

Hence, Proposition 8.1 implies [vk]t ∈ J+
κ if t is odd, and [vk]t/2 ∈ J+

κ if t is even.
Next, we note that [v(1, 2n− 2)]t /∈ J+

κ−1. Using inequality a ≥ bac, we have

(2n− 2)− 1 = 21+log2(n−1) − 1 ≥ 2κ−1 − 1,

and Proposition 8.1 applies. �

Theorem 8.3. The combinatorial rank of uq(sp2n) is blog2(n− 1)c+ 2.

The proof almost literally coincides with the proof of [6, Theorem 8.1] or [4,
Theorem 4].
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